Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Alzheimers Dement ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676563

RESUMO

INTRODUCTION: Animal research has shown that tau pathology in the locus coeruleus (LC) is associated with reduced norepinephrine signaling, lower projection density to the medial temporal lobe (MTL), atrophy, and cognitive impairment. We investigated the contribution of LC-MTL functional connectivity (FCLC-MTL) on cortical atrophy across Braak stage regions and its impact on cognition. METHODS: We analyzed functional magnetic resonance imaging and amyloid beta (Aß) positron emission tomography data from 128 cognitively normal participants, associating novelty-related FCLC-MTL with longitudinal atrophy and cognition with and without Aß moderation. RESULTS: Cross-sectionally, lower FCLC-MTL was associated with atrophy in Braak stage II regions. Longitudinally, atrophy in Braak stage 2 to 4 regions related to lower baseline FCLC-MTL at elevated levels of Aß, but not to other regions. Atrophy in Braak stage 2 regions mediated the relation between FCLC-MTL and subsequent cognitive decline. DISCUSSION: FCLC-MTL is implicated in Aß-related cortical atrophy, suggesting that LC-MTL connectivity could confer neuroprotective effects in preclinical AD. HIGHLIGHTS: Novelty-related functional magnetic resonance imaging (fMRI) LC-medial temporal lobe (MTL) connectivity links to longitudinal Aß-dependent atrophy. This relationship extended to higher Braak stage regions with increasing Aß burden. Longitudinal MTL atrophy mediated the LC-MTL connectivity-cognition relationship. Our findings mirror the animal data on MTL atrophy following NE signal dysfunction.

2.
J Cereb Blood Flow Metab ; : 271678X241237624, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452039

RESUMO

In addition to amyloid and tau pathology, elevated systemic vascular risk, white matter injury, and reduced cerebral blood flow contribute to late-life cognitive decline. Given the strong collinearity among these parameters, we proposed a framework to extract the independent latent features underlying cognitive decline using the Harvard Aging Brain Study (N = 166 cognitively unimpaired older adults at baseline). We used the following measures from the baseline visit: cortical amyloid, inferior temporal cortex tau, relative cerebral blood flow, white matter hyperintensities, peak width of skeletonized mean diffusivity, and Framingham Heart Study cardiovascular disease risk. We used exploratory factor analysis to extract orthogonal factors from these variables and their interactions. These factors were used in a regression model to explain longitudinal Preclinical Alzheimer Cognitive Composite-5 (PACC) decline (follow-up = 8.5 ±2.7 years). We next examined whether gray matter volume atrophy acts as a mediator of factors and PACC decline. Latent factors of systemic vascular risk, white matter injury, and relative cerebral blood flow independently explain cognitive decline beyond amyloid and tau. Gray matter volume atrophy mediates these associations with the strongest effect on white matter injury. These results suggest that systemic vascular risk contributes to cognitive decline beyond current markers of cerebrovascular injury, amyloid, and tau.

3.
Brain ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315899

RESUMO

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF, and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (Flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.

4.
J Cereb Blood Flow Metab ; 44(1): 131-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728659

RESUMO

Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Caracteres Sexuais , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Carbolinas/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/metabolismo
5.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036535

RESUMO

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Fatores de Risco
6.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37968130

RESUMO

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Atrofia , Tomografia por Emissão de Pósitrons
7.
JAMA Neurol ; 80(12): 1353-1363, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843849

RESUMO

Importance: Increased white matter hyperintensity (WMH) volume is a common magnetic resonance imaging (MRI) finding in both autosomal dominant Alzheimer disease (ADAD) and late-onset Alzheimer disease (LOAD), but it remains unclear whether increased WMH along the AD continuum is reflective of AD-intrinsic processes or secondary to elevated systemic vascular risk factors. Objective: To estimate the associations of neurodegeneration and parenchymal and vessel amyloidosis with WMH accumulation and investigate whether systemic vascular risk is associated with WMH beyond these AD-intrinsic processes. Design, Setting, and Participants: This cohort study used data from 3 longitudinal cohort studies conducted in tertiary and community-based medical centers-the Dominantly Inherited Alzheimer Network (DIAN; February 2010 to March 2020), the Alzheimer's Disease Neuroimaging Initiative (ADNI; July 2007 to September 2021), and the Harvard Aging Brain Study (HABS; September 2010 to December 2019). Main Outcome and Measures: The main outcomes were the independent associations of neurodegeneration (decreases in gray matter volume), parenchymal amyloidosis (assessed by amyloid positron emission tomography), and vessel amyloidosis (evidenced by cerebral microbleeds [CMBs]) with cross-sectional and longitudinal WMH. Results: Data from 3960 MRI sessions among 1141 participants were included: 252 pathogenic variant carriers from DIAN (mean [SD] age, 38.4 [11.2] years; 137 [54%] female), 571 older adults from ADNI (mean [SD] age, 72.8 [7.3] years; 274 [48%] female), and 318 older adults from HABS (mean [SD] age, 72.4 [7.6] years; 194 [61%] female). Longitudinal increases in WMH volume were greater in individuals with CMBs compared with those without (DIAN: t = 3.2 [P = .001]; ADNI: t = 2.7 [P = .008]), associated with longitudinal decreases in gray matter volume (DIAN: t = -3.1 [P = .002]; ADNI: t = -5.6 [P < .001]; HABS: t = -2.2 [P = .03]), greater in older individuals (DIAN: t = 6.8 [P < .001]; ADNI: t = 9.1 [P < .001]; HABS: t = 5.4 [P < .001]), and not associated with systemic vascular risk (DIAN: t = 0.7 [P = .40]; ADNI: t = 0.6 [P = .50]; HABS: t = 1.8 [P = .06]) in individuals with ADAD and LOAD after accounting for age, gray matter volume, CMB presence, and amyloid burden. In older adults without CMBs at baseline, greater WMH volume was associated with CMB development during longitudinal follow-up (Cox proportional hazards regression model hazard ratio, 2.63; 95% CI, 1.72-4.03; P < .001). Conclusions and Relevance: The findings suggest that increased WMH volume in AD is associated with neurodegeneration and parenchymal and vessel amyloidosis but not with elevated systemic vascular risk. Additionally, increased WMH volume may represent an early sign of vessel amyloidosis preceding the emergence of CMBs.


Assuntos
Doença de Alzheimer , Amiloidose , Substância Branca , Humanos , Feminino , Idoso , Adulto , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Longitudinais , Estudos de Coortes , Estudos Transversais , Imageamento por Ressonância Magnética , Amiloidose/complicações , Proteínas Amiloidogênicas
8.
Commun Med (Lond) ; 3(1): 106, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528163

RESUMO

INTRODUCTION: Non-invasive diffusion-weighted imaging (DWI) to assess brain microstructural changes via cortical mean diffusivity (cMD) has been shown to be cross-sectionally associated with tau in cognitively normal older adults, suggesting that it might be an early marker of neuronal injury. Here, we investigated how regional cortical microstructural changes measured by cMD are related to the longitudinal accumulation of regional tau as well as to episodic memory decline in cognitively normal individuals harboring amyloid pathology. METHODS: 122 cognitively normal participants from the Harvard Aging Brain Study underwent DWI, T1w-MRI, amyloid and tau PET imaging, and Logical Memory Delayed Recall (LMDR) assessments. We assessed whether the interaction of baseline amyloid status and cMD (in entorhinal and inferior-temporal cortices) was associated with longitudinal regional tau accumulation and with longitudinal LMDR using separate linear mixed-effects models. RESULTS: We find a significant interaction effect of the amyloid status and baseline cMD in predicting longitudinal tau in the entorhinal cortex (p = 0.044) but not the inferior temporal lobe, such that greater baseline cMD values predicts the accumulation of entorhinal tau in amyloid-positive participants. Moreover, we find a significant interaction effect of the amyloid status and baseline cMD in the entorhinal cortex (but not inferior temporal cMD) in predicting longitudinal LMDR (p < 0.001), such that baseline entorhinal cMD predicts the episodic memory decline in amyloid-positive participants. CONCLUSIONS: The combination of amyloidosis and elevated cMD in the entorhinal cortex may help identify individuals at short-term risk of tau accumulation and Alzheimer's Disease-related episodic memory decline, suggesting utility in clinical trials.


People with Alzheimer's disease have problems with their memory and ability to acquire and process knowledge. Understanding the earliest brain changes leading to these problems helps identify those likely to develop Alzheimer's disease early in the disease process. This study used a marker that measures the mobility of water in the brain to investigate how these changes can predict development of a protein named tau and changes in people's memory. The participants showed no signs of memory impairment at the beginning of the study, but some developed memory decline during follow-up. Greater mobility of water in certain brain areas predicted future increase in tau and decline in memory, indicating this measure could be used to identify people at risk of developing Alzheimer's disease.

9.
Neurology ; 101(12): e1206-e1217, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37491329

RESUMO

BACKGROUND AND OBJECTIVES: The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline. METHODS: We combined functional MRI data of a novel vs repeated face-name learning paradigm, [18F]-FTP-PET, [11C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition. RESULTS: The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition. DISCUSSION: Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Doença de Alzheimer/metabolismo , Locus Cerúleo/diagnóstico por imagem , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/psicologia , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Tomografia por Emissão de Pósitrons/métodos
10.
Aging Cell ; 22(8): e13871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291760

RESUMO

Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aß compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic ß-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials.


Assuntos
Doença de Alzheimer , Presenilina-1 , Humanos , Masculino , Feminino , Adulto , Encéfalo/metabolismo , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Mutação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cognição , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estudos Longitudinais , Estudos Transversais , Biomarcadores
11.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333223

RESUMO

Alzheimer's disease (AD) heritability is enriched in glial genes, but how and when cell-type-specific genetic risk contributes to AD remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets. In an autopsy dataset spanning all stages of AD (n=1,457), astrocytic (Ast) ADPRS was associated with both diffuse and neuritic Aß plaques, while microglial (Mic) ADPRS was associated with neuritic Aß plaques, microglial activation, tau, and cognitive decline. Causal modeling analyses further clarified these relationships. In an independent neuroimaging dataset of cognitively unimpaired elderly (n=2,921), Ast-ADPRS were associated with Aß, and Mic-ADPRS was associated with Aß and tau, showing a consistent pattern with the autopsy dataset. Oligodendrocytic and excitatory neuronal ADPRSs were associated with tau, but only in the autopsy dataset including symptomatic AD cases. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.

12.
J Alzheimers Dis ; 94(1): 217-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212093

RESUMO

BACKGROUND: Detecting clinically meaningful changes in instrumental activities of daily living (IADL) at the earliest stages of Alzheimer's disease (AD) is critical. OBJECTIVE: The objective of this exploratory study was to examine the cross-sectional relationship between a performance-based IADL test, the Harvard Automated Phone Task (APT), and cerebral tau and amyloid burden in cognitively normal (CN) older adults. METHODS: Seventy-seven CN participants underwent flortaucipir tau and Pittsburgh Compound B amyloid PET. IADL were assessed using the three Harvard APT tasks: prescription refill (APT-Script), health insurance company call (APT-PCP), and bank transaction (APT-Bank). Linear regression models were used to determine associations between each APT task and entorhinal cortex, inferior temporal, or precuneus tau with or without an interaction with amyloid. RESULTS: Significant associations were found between APT-Bank task rate and interaction between amyloid and entorhinal cortex tau, and APT-PCP task and interactions between amyloid and inferior temporal and precuneus tau. No significant associations were found between the APT tasks and tau or amyloid alone. CONCLUSION: Our preliminary findings suggest an association between a simulated real-life IADL test and interactions of amyloid and several regions of early tau accumulation in CN older adults. However, some analyses were underpowered due to the small number of participants with elevated amyloid, and findings should be interpreted with caution. Future studies will further explore these associations cross-sectionally and longitudinally in order to determine whether the Harvard APT can serve as a reliable IADL outcome measure for preclinical AD prevention trials and ultimately in the clinic setting.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Atividades Cotidianas , Disfunção Cognitiva/patologia , Córtex Entorrinal/patologia , Amiloide/metabolismo , Proteínas Amiloidogênicas , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides/metabolismo
13.
JAMA Neurol ; 80(5): 462-473, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010830

RESUMO

Importance: Postmenopausal females represent around 70% of all individuals with Alzheimer disease. Previous literature shows elevated levels of tau in cognitively unimpaired postmenopausal females compared with age-matched males, particularly in the setting of high ß-amyloid (Aß). The biological mechanisms associated with higher tau deposition in female individuals remain elusive. Objective: To examine the extent to which sex, age at menopause, and hormone therapy (HT) use are associated with regional tau at a given level of Aß, both measured with positron emission tomography (PET). Design, Setting, and Participants: This cross-sectional study included participants enrolled in the Wisconsin Registry for Alzheimer Prevention. Cognitively unimpaired males and females with at least 1 18F-MK-6240 and 11C-Pittsburgh compound B PET scan were analyzed. Data were collected between November 2006 and May 2021. Exposures: Premature menopause (menopause at younger than 40 years), early menopause (menopause at age 40-45 years), and regular menopause (menopause at older than 45 years) and HT user (current/past use) and HT nonuser (no current/past use). Exposures were self-reported. Main Outcomes and Measures: Seven tau PET regions that show sex differences across temporal, parietal, and occipital lobes. Primary analyses examined the interaction of sex, age at menopause or HT, and Aß PET on regional tau PET in a series of linear regressions. Secondary analyses investigated the influence of HT timing in association with age at menopause on regional tau PET. Results: Of 292 cognitively unimpaired individuals, there were 193 females (66.1%) and 99 males (33.9%). The mean (range) age at tau scan was 67 (49-80) years, 52 (19%) had abnormal Aß, and 106 (36.3%) were APOEε4 carriers. There were 98 female HT users (52.2%) (past/current). Female sex (standardized ß = -0.41; 95% CI, -0.97 to -0.32; P < .001), earlier age at menopause (standardized ß = -0.38; 95% CI, -0.14 to -0.09; P < .001), and HT use (standardized ß = 0.31; 95% CI, 0.40-1.20; P = .008) were associated with higher regional tau PET in individuals with elevated Aß compared with male sex, later age at menopause, and HT nonuse. Affected regions included medial and lateral regions of the temporal and occipital lobes. Late initiation of HT (>5 years following age at menopause) was associated with higher tau PET compared with early initiation (ß = 0.49; 95% CI, 0.27-0.43; P = .001). Conclusions and Relevance: In this study, females exhibited higher tau compared with age-matched males, particularly in the setting of elevated Aß. In females, earlier age at menopause and late initiation of HT were associated with increased tau vulnerability especially when neocortical Aß elevated. These observational findings suggest that subgroups of female individuals may be at higher risk of pathological burden.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Menopausa , Hormônios
14.
Neuropsychology ; 37(4): 436-449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35862098

RESUMO

OBJECTIVES: Studies are increasingly examining research questions across multiple cohorts using data from the preclinical Alzheimer cognitive composite (PACC). Our objective was to use modern psychometric approaches to develop a harmonized PACC. METHOD: We used longitudinal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and Australian Imaging, Biomarker and Lifestyle Study of Ageing (AIBL) cohorts (n = 2,712). We further demonstrated our method with the Anti-Amyloid Treatment of Asymptomatic Alzheimer's Disease (A4) Study prerandomized data (n = 4,492). For the harmonization method, we used confirmatory factor analysis (CFA) on the final visit of the longitudinal cohorts to determine parameters to generate latent PACC (lPACC) scores. Overlapping tests across studies were set as "anchors" that tied cohorts together, while parameters from unique tests were freely estimated. We performed validation analyses to assess the performance of lPACC versus the common standardized PACC (zPACC). RESULTS: Baseline (BL) scores for the zPACC were centered on zero, by definition. The harmonized lPACC did not define a common mean of zero and demonstrated differences in baseline ability levels across the cohorts. Baseline lPACC slightly outperformed zPACC in the prediction of progression to dementia. Longitudinal change in the lPACC was more constrained and less variable relative to the zPACC. In combined-cohort analyses, longitudinal lPACC slightly outperformed longitudinal zPACC in its association with baseline ß-amyloid status. CONCLUSIONS: This study proposes procedures for harmonizing the PACC that make fewer strong assumptions than the zPACC, facilitating robust multicohort analyses. This implementation of item response theory lends itself to adapting across future cohorts with similar composites. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/psicologia , Disfunção Cognitiva/psicologia , Progressão da Doença , Austrália , Peptídeos beta-Amiloides , Biomarcadores , Cognição , Estudos Longitudinais
15.
Alzheimers Dement (Amst) ; 14(1): e12319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821672

RESUMO

Introduction: Physical activity (PA) promotes resilience with respect to cognitive decline, although the underlying mechanisms are not well understood. We examined the associations between objectively measured PA and resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) across seven anatomically distributed neural networks. Methods: rs-fcMRI, amyloid beta (Aß) positron emission tomography (PET), PA (steps/day × 1 week), and longitudinal cognitive (Preclinical Alzheimer's Cognitive Composite) data from 167 cognitively unimpaired adults (ages 63 to 90) were used. We used linear and linear mixed-effects regression models to examine the associations between baseline PA and baseline network connectivity and between PA, network connectivity, and longitudinal cognitive performance. Results: Higher PA was associated selectively with greater connectivity in three networks previously associated with cognitive decline (default, salience, left control). This association with network connectivity accounted for a modest portion of PA's effects on Aß-related cognitive decline. Discussion: Although other mechanisms are likely present, PA may promote resilience with respect to Aß-related cognitive decline, partly by increasing connectivity in a subset of cognitive networks.

16.
Ann Neurol ; 92(5): 745-755, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35880989

RESUMO

OBJECTIVE: Elevated vascular risk and beta-amyloid (Aß) burden have been synergistically associated with cognitive decline in preclinical Alzheimer's disease (AD), although the underlying mechanisms remain unclear. We examined whether accelerated longitudinal tau accumulation mediates the vascular risk-Aß interaction on cognitive decline. METHODS: We included 175 cognitively unimpaired older adults (age 70.5 ± 8.0 years). Baseline vascular risk was quantified using the office-based Framingham Heart Study general cardiovascular disease risk score (FHS-CVD). Baseline Aß burden was measured with Pittsburgh Compound-B positron emission tomography (PET). Tau burden was measured longitudinally (3.6 ± 1.5 years) with Flortaucipir PET, focusing on inferior temporal cortex (ITC). Cognition was assessed longitudinally (7.0 ± 2.0 years) using the Preclinical Alzheimer's Cognitive Composite. Linear mixed effects models examined the interactive effects of baseline vascular risk and Aß on longitudinal ITC tau. Additionally, moderated mediation was used to determine whether tau accumulation mediated the FHS-CVD*Aß effect on cognitive decline. RESULTS: We observed a significant interaction between elevated baseline FHS-CVD and Aß on greater ITC tau accumulation (p = 0.004), even in individuals with Aß burden below the conventional threshold for amyloid positivity. Examining individual vascular risk factors, we found elevated systolic blood pressure and body mass index showed independent interactions with Aß on longitudinal tau (both p < 0.0001). ITC tau accumulation mediated 33% of the interactive association of FHS-CVD and Aß on cognitive decline. INTERPRETATION: Vascular risks interact with subthreshold levels of Aß to promote cognitive decline, partially by accelerating early neocortical tau accumulation. Our findings support vascular risk reduction, especially treating hypertension and obesity, to attenuate Aß-related tau pathology and reduce late-life cognitive decline. ANN NEUROL 2022;92:745-755.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Disfunção Cognitiva , Humanos , Idoso , Pessoa de Meia-Idade , Proteínas tau , Disfunção Cognitiva/diagnóstico por imagem , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Tomografia por Emissão de Pósitrons , Biomarcadores
17.
Ann Neurol ; 92(3): 358-363, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35670654

RESUMO

Autosomal-dominant, Dutch-type cerebral amyloid angiopathy (D-CAA) offers a unique opportunity to develop biomarkers for pre-symptomatic cerebral amyloid angiopathy (CAA). We hypothesized that neuroimaging measures of white matter injury would be present and progressive in D-CAA prior to hemorrhagic lesions or symptomatic hemorrhage. In a longitudinal cohort of D-CAA carriers and non-carriers, we observed divergence of white matter injury measures between D-CAA carriers and non-carriers prior to the appearance of cerebral microbleeds and >14 years before the average age of first symptomatic hemorrhage. These results indicate that white matter disruption measures may be valuable cross-sectional and longitudinal biomarkers of D-CAA progression. ANN NEUROL 2022;92:358-363.


Assuntos
Angiopatia Amiloide Cerebral , Substância Branca , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/patologia , Estudos Transversais , Hemorragia/patologia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
18.
Neurology ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473760

RESUMO

BACKGROUND AND OBJECTIVES: Vascular risk factors and elevated ß-amyloid (Aß) are commonly observed together among older adults. Here, we examined the interactive versus independent effects of systemic vascular risk and Aß burden on longitudinal gray matter atrophy, and how their co-occurrence may be related to cognitive decline in a cohort of clinically normal adults. A secondary goal was to examine whether vascular risk influences gray matter atrophy independently from markers of white matter injury. METHODS: Participants were 196 adults (age=73.8±6.1 years) from the Harvard Aging Brain Study. Baseline Aß burden was quantified with Pittsburgh Compound-B PET. Baseline vascular risk was measured with the Framingham Heart Study cardiovascular disease risk score. Brain atrophy was quantified longitudinally with structural magnetic resonance imaging over a median of 4.50 (±1.26) years. Cognition was assessed yearly with the Preclinical Alzheimer Cognitive Composite over a median of 6.25 (±1.40) years. Linear mixed-effects models examined vascular risk and Aß burden as interactive versus independent predictors of gray matter atrophy, adjusting for age, sex, years of education, APOE ε4 status, intracranial volume (where appropriate), and their interactions with time. In subsequent models we adjusted for markers of white matter injury to determine whether vascular risk accelerates brain atrophy independently from diffusion- and FLAIR-based markers. Mediation analyses examined whether brain atrophy mediated the interactive association of vascular risk and Aß burden on cognitive decline. RESULTS: Higher vascular risk and elevated Aß burden interacted to predict more severe atrophy within frontal and temporal lobes, thalamus, and striatum. Higher Aß burden, but not vascular risk, was associated with more severe atrophy in parietal and occipital lobes, as well as the hippocampus. Adjusting for diffusion- and FLAIR-based markers of white matter injury had little impact on the above associations. Gray matter atrophy mediated the association between vascular risk and cognitive decline at higher levels of Aß burden. DISCUSSION: We observed an interaction between elevated vascular risk and higher Aß burden with longitudinal brain atrophy, which in turn influenced cognitive decline. These results support vascular risk factor management as a potential intervention to slow neurodegeneration and cognitive decline in preclinical Alzheimer's disease.

19.
Nat Commun ; 13(1): 1571, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322012

RESUMO

Animal and human imaging research reported that the presence of cortical Alzheimer's Disease's (AD) neuropathology, beta-amyloid and neurofibrillary tau, is associated with altered neuronal activity and circuitry failure, together facilitating clinical progression. The locus coeruleus (LC), one of the initial subcortical regions harboring pretangle hyperphosphorylated tau, has widespread connections to the cortex modulating cognition. Here we investigate whether LC's in-vivo neuronal activity and functional connectivity (FC) are associated with cognitive decline in conjunction with beta-amyloid. We combined functional MRI of a novel versus repeated face-name paradigm, beta-amyloid-PET and longitudinal cognitive data of 128 cognitively unimpaired older individuals. We show that LC activity and LC-FC with amygdala and hippocampus was higher during novelty. We also demonstrated that lower novelty-related LC activity and LC-FC with hippocampus and parahippocampus were associated with steeper beta-amyloid-related cognitive decline. Our results demonstrate the potential of LC's functional properties as a gauge to identify individuals at-risk for AD-related cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Locus Cerúleo/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
20.
Neurology ; 98(15): e1512-e1524, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35338074

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) clinical trials are moving earlier in the disease process according to emerging signs of ß-amyloid (Aß) and tau pathology. If early treatment is the right time for intervention, it is critical to find the right test to optimize cognitive outcome measures for clinical trials. We sought to identify cognitive measures associated with the earliest detectable signs of emerging Aß and tau pathology. METHODS: One hundred twelve clinically normal adults with longitudinal Pittsburgh compound B (PiB)-PET, 18F-flortaucipir (FTP)-PET, and cognitive data for ≥7 years were included from the Harvard Aging Brain Study (HABS). Analyses assessed those initially classified as PiB- (less than Centiloid [CL] 20) and then expanded to include PiB+ individuals up to CL40, the approximate threshold beyond which neocortical tau proliferation begins. Separate linear mixed-effects models assessed the effects of emerging global Aß (PiB slope) and tau (baseline FTP level and FTP slope) in the entorhinal and inferior temporal (IT) cortices on multiple cognitive tasks and the Preclinical Alzheimer's Cognitive Composite (PACC) over time. RESULTS: Steeper PiB slopes were associated with declining processing speed (Digit Symbol Substitution Test [DSST], Trail Making Test Part A) in those CL40). DISCUSSION: Early, Aß-mediated cognitive slowing was detected for processing speed measures, while early memory retrieval declines were associated with emerging Aß and tau pathology. Composites of these measures may help determine whether anti-Aß or anti-tau therapies administered at the first signs of pathology might preserve cognitive function. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in clinically normal older adults, emerging PET-detected AD pathology is associated with declining processing speeds and memory retrieval.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/patologia , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA